Tuesday, 10 October 2017

Matlab De Filtro De Media Móvil De 5 Puntos


Respuesta de Frecuencia del Filtro Promedio Corriente La respuesta de frecuencia de un sistema LTI es la DTFT de la respuesta de impulso. La respuesta de impulso de un promedio móvil de L-muestra es. Dado que el filtro de media móvil es FIR, la respuesta de frecuencia se reduce a la suma finita We Puede utilizar la identidad muy útil para escribir la respuesta de frecuencia como donde hemos dejado ae menos jomega. N 0 y M L menos 1. Podemos estar interesados ​​en la magnitud de esta función para determinar qué frecuencias pasan a través del filtro sin atenuación y cuáles son atenuadas. A continuación se muestra un gráfico de la magnitud de esta función para L 4 (rojo), 8 (verde) y 16 (azul). El eje horizontal varía de cero a pi radianes por muestra. Observe que en los tres casos, la respuesta de frecuencia tiene una característica de paso bajo. Un componente constante (frecuencia cero) en la entrada pasa a través del filtro sin atenuación. Ciertas frecuencias más altas, como pi / 2, son completamente eliminadas por el filtro. Sin embargo, si la intención era diseñar un filtro de paso bajo, entonces no lo hemos hecho muy bien. Algunas de las frecuencias más altas se atenúan sólo por un factor de 1/10 (para la media móvil de 16 puntos) o 1/3 (para la media móvil de cuatro puntos). Podemos hacer mucho mejor que eso. La gráfica anterior se creó mediante el siguiente código Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 (1-exp (-iomega8)) ./ (1-exp (-iomega)) trama (omega) , Abs (H4) abs (H8) abs (H16)) ejemplar (0, pi, 0, 1) Copyright copy 2000- Universidad de California, Berkeley Como su nombre implica, el filtro de media móvil opera promediando un número de puntos de La señal de entrada para producir cada punto en la señal de salida. En la forma de la ecuación, esto se escribe: Donde x es la señal de entrada, y es la señal de salida, y M es el número de puntos en la media. Por ejemplo, en un filtro de media móvil de 5 puntos, el punto 80 de la señal de salida viene dado por: La figura 15-1 muestra un ejemplo de cómo funciona. La señal en (a) es un pulso enterrado en un ruido aleatorio. En (b) y (c), la acción de suavizado del filtro de media móvil disminuye la amplitud del ruido aleatorio (bueno), pero también reduce la nitidez de los bordes (malo). De todos los posibles filtros lineales que podrían utilizarse, el promedio móvil produce el menor ruido para una nitidez de borde dada. La cantidad de reducción de ruido es igual a la raíz cuadrada del número de puntos en el promedio. Por ejemplo, un filtro de media móvil de 100 puntos reduce el ruido en un factor de 10. Para entender por qué el promedio móvil es la mejor solución, imagine que queremos diseñar un filtro con una nitidez de borde fijo. Por ejemplo, supongamos que fijamos la nitidez del borde especificando que hay once puntos en la subida de la respuesta escalonada. Esto requiere que el núcleo del filtro tenga once puntos. La pregunta de optimización es: ¿cómo elegimos los once valores en el núcleo del filtro para minimizar el ruido en la señal de salida Dado que el ruido que estamos tratando de reducir es aleatorio, ninguno de los puntos de entrada es especial cada uno es tan ruidoso como su vecino . Por lo tanto, es inútil dar tratamiento preferencial a cualquiera de los puntos de entrada asignándole un coeficiente mayor en el núcleo del filtro. El menor ruido se obtiene cuando todas las muestras de entrada son tratadas de manera igual, es decir, el filtro de media móvil. (Más adelante en este capítulo mostramos que otros filtros son esencialmente buenos, el punto es que ningún filtro es mejor que la media móvil simple). El filtro de media móvil es un simple filtro FIR de paso bajo (respuesta de impulso finito) comúnmente utilizado para suavizar una matriz de datos / señal muestreados. Se toman M muestras de entrada a la vez y tomar el promedio de esas M-muestras y produce un solo punto de salida. Se trata de una simple LPF (Low Pass Filter) estructura que viene práctico para los científicos y los ingenieros para filtrar el componente ruidoso no deseado de los datos previstos. A medida que aumenta la longitud del filtro (el parámetro M) aumenta la suavidad de la salida, mientras que las transiciones bruscas en los datos se hacen cada vez más contundentes. Esto implica que este filtro tiene excelente respuesta en el dominio del tiempo pero una respuesta de frecuencia pobre. El filtro MA realiza tres funciones importantes: 1) toma M puntos de entrada, calcula el promedio de esos puntos M y produce un único punto de salida. 2) Debido al cálculo / cálculos involucrados. El filtro introduce una cantidad definida de retardo 3) El filtro actúa como un filtro de paso bajo (con una respuesta de dominio de frecuencia pobre y una buena respuesta de dominio de tiempo). Código Matlab: El siguiente código matlab simula la respuesta en el dominio del tiempo de un filtro M-point Moving Average y también traza la respuesta de frecuencia para varias longitudes de filtro. Respuesta de Dominio de Tiempo: En la primera trama, tenemos la entrada que va en el filtro de media móvil. La entrada es ruidosa y nuestro objetivo es reducir el ruido. La siguiente figura es la respuesta de salida de un filtro de media móvil de 3 puntos. Puede deducirse de la figura que el filtro de media móvil de 3 puntos no ha hecho mucho en filtrar el ruido. Aumentamos los grifos de filtro a 51 puntos y podemos ver que el ruido en la salida se ha reducido mucho, que se representa en la siguiente figura. Aumentamos los grifos más allá de 101 y 501 y podemos observar que aunque el ruido sea casi cero, las transiciones se atenuan drásticamente (observe la pendiente en cada lado de la señal y compárelas con la transición ideal de pared de ladrillo en Nuestra entrada). Respuesta de Frecuencia: A partir de la respuesta de frecuencia se puede afirmar que el roll-off es muy lento y la atenuación de banda de parada no es buena. Dada esta atenuación de banda de parada, claramente, el filtro de media móvil no puede separar una banda de frecuencias de otra. Como sabemos que un buen rendimiento en el dominio del tiempo da como resultado un rendimiento pobre en el dominio de la frecuencia, y viceversa. En resumen, el promedio móvil es un filtro de suavizado excepcionalmente bueno (la acción en el dominio del tiempo), pero un filtro de paso bajo excepcionalmente malo (la acción en el dominio de la frecuencia) Enlaces externos: Libros recomendados:

No comments:

Post a Comment